ST EDWARD'S

OXFORD

Lower Sixth Entrance Assessment

November 2013

Chemistry

1 Hour

Candidates name:

Relative atomic mass Symbol Name Atomic number

	7	6	л	4	ω	2	Peri 1	
	223 Fr Francium 87	133 Cs Caesium 55	86 Rb Rubidium 37	39 K Potassium 19	23 Na Sodium 11	7 Li Lithium 3	d	-
	226 Ra Radium 88	137 Ba Barium 56	88 Sr Strontium 38	40 Ca Calcium 20	24 Mg Magnesium 12	9 Be Beryllium 4		2
	227 Ac Actinium 89	139 La Lanthanum 57	89 Y Yttrium 39	45 Sc Scandium 21				
		179 Hf Hafnium 72	91 Zr Zirconium 40	48 Ti Titanium 22				
		181 Ta Tantalum 73	93 Nb Niobium 41	51 V Vanadium 23				
		184 W Tungsten 74	96 Mo Molybdenum 42	52 Cr Chromium 24				
		186 Re Rhenium 75	99 Tc Technetium 43	55 Mn Manganese 25				
Key		190 Os Osmium 76	101 Ru Ruthenium 44	56 Fe 1ron 26			1 Hydrogen	Group
		192 Ir Iridium 77	103 Rh Rhodium 45	59 Co Cobalt 27				
		195 Pt Platinum 78	106 Pd Palladium 46	59 Ni Nicket 28				
		197 Au Gold 79	108 Ag Silver 47	63.5 Cu ^{Copper} 29				
		201 Hg Mercury 80	112 Cd Cadmium 48	65 Zn ^{Zinc} 30				
		204 Tl Thallium 81	115 In Indium 49	70 Ga Gallium 31	27 Al Aluminium 13	11 B Boron 5		з
		207 Pb Lead 82	119 Sn Tin 50	73 Ge Germanium 32	28 Si Silicon 14	12 C Carbon 6		4
		209 Bi Bismuth 83	122 Sb Antimony 51	75 As Arsenic 33	31 P Phosphorus 15	14 N Nitrogen		л
		210 Po Polonium 84	128 Te Tellurium 52	79 Se Selenium 34	32 S Sulfur 16	16 O Oxygen 8		6
		210 At Astatine 85	127 I Iodine 53	80 Br Bromine 35	35.5 Cl Chlorine 17	19 F Fluorine 9		7
		222 Rn Radon 86	131 Xe Xenon 54	84 Kr Krypton 36	40 Argon 18	20 Neon 10	4 He Helium 2	0

St Edward's School

THE PERIODIC TABLE

1. Complete the table below.

Element	Symbol
calcium	
	Pb
	S

(Total 3 marks)

2. The diagram shows the structure of a lithium atom.

3.	The table gives	some information	about a family of	molecules in a	crude oil
<i>v</i> .		some miormation	uoout a fuiling of	morecules m	

Number of carbon atoms in molecule	Mass of molecule in atomic units
1	16
2	30
4	58

(a) Use the information from the table to complete the graph.

(1) (Total 4 marks)

St Edward's School

(b)

4. Acids react with alkalis to form salts and water.

Complete the table below by writing in the name and formula of the salt formed in each reaction.

The first one has been done for you.

Acid	Alkali	Salt	Formula of salt	
Hydrochloric acid	Sodium hydroxide	Sodium chloride	NaCl	
Nitric acid	Sodium hydroxide			
Sulphuric acid	Potassium hydroxide			

(Total 4 marks)

5. A student wanted to find out how much of a substance, to the nearest 0.1 gram, dissolves in 15cm³ of water. His plan for the experiment is shown below, but the descriptions of some of the steps have been missed out.

The missing steps in his plan are written below, but not in the correct order.

- A Shake thoroughly for some time.
- B Measure out 0.1 gram of the substance.
- C Record the amount of substance added.
- D Measure out 15cm³ of water into a test tube.
- (a) Write the letters A, B, C and D in the boxes in his plan, in the correct order.

(4)

(b) How would you know that the substance had dissolved?

(2) (Total 6 marks) 6. This experiment shows a candle burning then going out.

(a) Choose words from this list to complete the sentences in parts (i) and (ii) below.

		air	carbon dioxide	hydrogen	nitrogen	oxygen	
	(i)	When the	he candle wax is bur	ning it is reacting	g with		from
							(2)
	(ii)	One pro	oduct of the reaction	is			. (1)
(b)	Comp	plete the	following sentence.				
	In and	other exp	periment a 200 cm ³ b	eaker is used. Th	e candle will th	ien burn	
	for ab	out		seconds.			(1) (Total 4 marks)

7. You will find it helpful to use the information on the Periodic Table when answering this question.

In the nucleus of an aluminium atom are:

13 protons and 14 neutrons.

(a) Complete these sentences.
(i) The mass number of the aluminium atom is electrons.
(ii) In an atom of aluminium there are electrons.

(2)

(2)

(b) Why is an aluminium atom electrically neutral?

.....

(c) Complete the table for the element fluorine.

PARTICLE	NUMBER OF PROTONS	NUMBER OF NEUTRONS	NUMBER OF ELECTRONS
Fluorine atom	9		9
Fluoride ion		10	

(3) (Total 7 marks) 8. Calculate the formula mass (Mr), of the compound

calcium hydroxide, Ca (OH)₂.

(Show your working)

- 9. Zinc powder normally reacts slowly with hydrochloric acid.
 - (a) Balance the symbol equation for the reaction.

 $Zn + HCl \rightarrow ZnC1_2 + H_2$

The graph shows the results from a reaction of 1.0 g of zinc powder with 20 cm³ of dilute hydrochloric acid. It gives off a gas and forms zinc chloride, $ZnCl_2$. Some unreacted zinc is left at the end.

- (b) Copper powder is a good catalyst for the reaction of zinc with hydrochloric acid.
 - (i) A mixture of 10 cm³ of the same dilute hydrochloric acid and 1.0 g of copper powder was added to 1.0 g of zinc powder. What is the maximum volume of gas which could be given off?

- (ii) Draw a graph, on the axes above, for an experiment where 20 cm³ of the same dilute hydrochloric acid was added to 1.0 g of copper powder mixed with 1.0 g of zinc powder.
- (iii) Give **two** other ways the reaction described in part (i) could be made to go faster.

1	
2	
	(2)

(1)

(2)

(1)

- (c) Copper powder can be formed by adding copper sulphate solution to the mixture of zinc powder and acid.
 - (i) Why does zinc react with copper sulphate solution to produce copper?

(ii) Write the word equation for the reaction.

.....

(1) (Total 8 marks) **10.** Read the passage carefully and then answer the questions.

The electrolysis of acidified water

After a few drops of dilute sulphuric acid have been added to some distilled water, there will be three types of ion in solution:

from the water, $H_2O(l) \rightarrow H^+(aq) + OH^-(aq)$

from the acid, $H_2SO_4(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$

When the electrodes (anode and cathode) in a circuit are put into the acidified water, the hydroxide ions and the sulphate ions are both attracted to the electrode called the anode. However, it is harder for the sulphate ions to give up their electrons than for the hydroxide ions to do this. So the hydroxide ions are the ones which react and bubbles of oxygen are formed at the anode.

There are only hydrogen ions to be attracted towards the cathode and, when they get there, they take up electrons to form hydrogen molecules.

From Chemistry Matters by Richard Hart, reproduced by permission of Oxford University Press

Even in a small volume of water acidified with dilute sulphuric acid there will be billions of ions. Some will be anions and some will be cations.

(i) Name the ions in water acidified with dilute sulphuric acid.

.....

(1)

(2)

(ii) Explain why only some of the ions are attracted to the anode.

(iii) Balance the equation for the reaction of hydroxide ions at the anode.

 $4OH^{-} \rightarrow H_{2}O + O_{2} + e^{-}$

(1) (Total 4 marks)

- **11.** Ammonia is manufactured in the Haber Process, from nitrogen and hydrogen.
 - (a) Balance this symbol equation for the process.

$$N_2 + H_2 \rightleftharpoons NH_3$$

(b) The graph below shows the percentage of reacting gases converted into ammonia, at different temperatures and pressures.

(2)

12. The table shows the properties of four elements from Group VII of the Periodic Table.

Element	Proton Number	Electronic structure	Boiling point (°C)	Melting point (°C)	State at 20°C	Reaction with hydrogen	
						Ease	Product
Fluorine		2.7	-188	-218	gas	Explosive reaction in dull light	hydrogen fluoride
Chlorine	17		-34	-101		Explosive reaction in sunlight	hydrogen chloride
Bromine	35	2.8.18.7	+59	-7		React if heated	hydrogen bromide
Iodine	53	2.8.18.18.7	+185	+114	solid	React if heated strongly	hydrogen iodide

(a) Complete the spaces in the table.

(4)

(1)

(b) Comment briefly on the trend in melting points for these four elements.

(c) Explain, in as much detail as you can: